"Synthetic Fiber Spinning: 4 Key Methods Explained (With Fiber Types & Principles)" Part - 1

Why This Matters for Textile Professionals

Synthetic fiber spinning transforms raw polymers into usable fibers—determining strength, elasticity, and end-use performance. Understanding these methods is essential for fiber engineers, product developers, and textile students.

1. Melt Spinning (Thermoplastic Polymers)

Principle: Extrusion of molten polymer through spinneret followed by rapid cooling.

Key Fibers Produced:

  • Polyester (PET) – Apparel, home textiles
  • Nylon 6 & Nylon 6,6 – Hosiery, sportswear
  • Polypropylene (PP) – Nonwovens, ropes
  • PLA (Polylactic Acid) – Biodegradable textiles

Technical Highlights:

  • Temperature Control Critical (PET: 260-290°C, Nylon: 220-265°C)
  • Shear Rate Effects – Higher extrusion speeds reduce viscosity
  • Quenching Air Velocity – 0.5-2 m/s for uniform crystallinity

*(Industry Fact: Accounts for 75%+ of synthetic fiber production due to speed & cost efficiency.)*


2. Dry Spinning (Solvent-Based, Volatile Removal)

Principle: Dissolved polymer extruded into hot gas to evaporate solvent.

Key Fibers Produced:

  • Acrylic – Sweaters, faux fur
  • Spandex (Lycra®) – Stretch fabrics
  • Vinyon (PVC-based) – Filter fabrics

Technical Highlights:

  • Solvent Choice is Critical (DMF for acrylic, DMAc for spandex)
  • Mass Transfer Limitation – Diffusion rate of solvent in air (~10⁻⁵ m²/s)
  • Residual Solvent – Must be <1% for textile safety

(Pro Tip: Used when polymers degrade before melting.)


3. Wet Spinning (Coagulation Chemistry)

Principle: Polymer solution extruded into liquid bath for phase separation.

Key Fibers Produced:

  • Viscose Rayon – Dresses, linings
  • Acrylic (Alternative Process) – Outdoor fabrics
  • Aramid (Kevlar®) – Bulletproof vests
  • Modal & Lyocell – Sustainable cellulosics

Technical Highlights:

  • Bath Composition Dictates Fiber Structure (e.g., H₂SO₄ for rayon)
  • Skin-Core Morphology – Controlled by coagulation rate
  • Environmental Challenge – Solvent recovery systems mandatory

*(Emerging Trend: Closed-loop Lyocell process recovers 99% solvent.)*


4. Gel Spinning (Ultra-High Molecular Weight)

Principle: Semi-dilute polymer solution stretched to align molecules.

Key Fibers Produced:

  • UHMWPE (Dyneema®) – Body armor, marine ropes
  • PBO (Zylon®) – Firefighter gear
  • High-Strength PAN – Carbon fiber precursor

Technical Highlights:

  • Ultra-Low Concentration (0.5-2% polymer)
  • Superdrawing – Draw ratios up to 100:1
  • Crystallinity Matters – Up to 95% for maximum strength

(Performance Benchmark: Dyneema® is 15x stronger than steel by weight.)


Quick-Reference Comparison Table

Method  

Principle

Key Fibers

Throughput  

Strength

 (g/den)  

Melt

Melt → Extrude → Cool

PET, Nylon, PP

Very High

3-9

Dry

Dissolve → Evaporate

Acrylic, Spandex

Medium

2-5

Wet

Dissolve → Coagulate

Rayon, Aramid

Low

3-8

Gel

Gel → Ultra-Draw

UHMWPE, PBO

Very Low

15-35


5 Must-Know Technical Takeaways

1.     Melt spinning dominates due to speed, but limited to thermoplastics.

2.     Dry spinning costs more but essential for heat-sensitive polymers.

3.     Wet spinning enables cellulose regenerated fibers (eco-alternatives).

4.     Gel spinning creates the strongest fibers but has low productivity.

5.     Fiber cross-section shapes (round, trilobal, hollow) depend on spinneret design.